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Lattice models such as Ising or Potts models are very often successfully applied 
to order-disorder phenomena in solids (e.g., for alloys) or on surfaces (e.g., for 
physisorption). In this contribution it is shown how to derive such models from 
a microscopic Hamiltonian in the framework of classical statistical mechanics. 
Both structural relaxations and thermal fluctuations can be incorporated within 
t h e  (temperature-dependent) parameters of the lattice model. 

KEY W O R D S :  Ising model; lattice relaxation; phonon; order-disorder trans- 
ition. 

1. I N T R O D U C T I O N  

The popularity of lattice models (such as Ising or Potts models) does 
not need to be emphasized. It originates from the fact that these simple 
models provide a qualitative description of a great variety of phenomena 
(ferromagnetism, order-disorder transitions, adsorption, spin glasses,...), 
providing valuable insight into the general importance of dimensionality, 
surfaces, and impurities. They also constitute an ideal playground for the 
quest of rigorous results. 

However, a number of studies It 4~ where cou.pling parameters were 
determined on a microscopic basis have demonstrated that lattice models 
can be very successful for quantitative predictions. These impressive suc- 
cesses raise the question of the extent to which the lattice models can 
faithfully represent the underlying microscopic theories. Intuitively, one of 
the obvious differences between lattice models and "reality" is that atoms 
are never located on a perfect lattice. On the one hand, there are always 
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thermal fluctuations around equilibrium positions. On the other hand, 
even when atoms are in an equilibrium position, they often do not form a 
perfect lattice. Consider two classic examples of order~lisorder transitions: 
adsorption and substitutional alloys. In the first case, an atom adsorbed on 
a surface (e.g., He on graphite) has preferential sites disposed on a regular 
lattice defined by the underlying substrate. But if another atom adsorbed 
on the surface comes close to this atom, their mutual interaction will tend 
to move them a little bit off the underlying lattice. Also, the mere presence 
of an atom on the surface will tend to modify.slightly the positions of the 
atoms of the substrate. These phenomena are called local relaxation. In the 
case of substitutional alloys, the situation is even more complicated, 
because on top of local relaxations a change of the mean lattice constant 
occurs as a function of composition, a phenomenon called global relaxation. 

At first view, it seems hopeless to try to describe such phenomena by 
lattice models. Our goal is to show that this a misconception, and that 
these relaxation phenomena can perfectly be taken into account, as long as 
it is possible to associate to each lattice configuration a metastable state of 
the physical system. Even the contribution of phonons to the partition 
function can be included, if lattice models with temperature-dependent 
couplings are envisaged. This last point has been recognized before; see, 
e.g., refs. 1 and 2. However, our approach is more systematic. 

More precisely, we want to show how it is possible to derive in a natural 
way a lattice model from the classical partition function using a simple 
hypothesis on the metastable states of the system together with a harmonic 
expansion about these states (which is justified asymptotically). This shows 
the microscopic origin of the coupling parameters, and puts calculations 
with lattice models on a better footing by indicating in which limit and 
under what general hypothesis they can be justified. Note the difference 
with the studies of refs. 1-4 and similar ones, where an Ising model is 
postulated as a starting point, and the problem is then to determine its 
coupling parameters on a microscopic basis. 

The two physical systems that we will use as illustrations (adsorption 
and substitutional alloys) give rise to lsing models, but our analysis could 
just as well be applied to systems where other types of lattice models are 
required, like Potts models. 

The rest of this article is structured in the following way. In Section 2, 
we consider a one-dimensional model and use it as an illustration for the 
general procedure leading from the classical partition function to an Ising 
model. All the calculations can be performed analytically, and the physical 
origin of the various parameters entering the couplngs of the lsing model 
can be discussed transparently. This example demonstrates explicitly that a 
lattice model does not require atoms to be located at the sites of a perfect 
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lattice. In the next two sections, we generalize these ideas. In Section 3, we 
show the importance of metastable states for the classical partition function 
at low temperatures. As shown in Section 4, under suitable hypotheses the 
resulting sum over all the metastable states can be expressed as the sum 
over all configurations of a lattice model. Section 5 concludes the paper 
with a summary of the main differences between our results and more 
intuitive views of lattice models. We also discuss possible generalizations. 

2. IS ING M O D E L  FOR A O N E - D I M E N S I O N A L  ALLOY 

We start with the case of  a very simple one-dimensional model. The 
method used in this section is certainly not the most direct one for this 
particular model, but it serves to illustrate the ideas that will be applied to 
more complicated situations afterward. 

Consider a system of N atoms in one dimension. These atoms can be 
of two different types, with NA particles of type A, NB particles of type B, 
x = N, , , /N  being the propor t ion of A atoms. They interact only with their 
nearest neighbors through a pair potential V,v(r), /~ and v being the types 
of  the atoms and r their distance. We will suppose that the potentials 
Vuv(r) are repulsive at short distance, attractive at large distance, and have 
one minimum at r = It,,,, but no other local minima. Expanding around this 
minimum gives 

Vu,,(r) = Eu,, + �89 K .v ( r  - l m , )  2 + (.9( (r - l~,,) 3) (1) 

the constants Es,,. and Ks,,. characterizing the energy and the stiffness of a 
bond linking an atom of type p and one of type v. 

We want to calculate the partition function in the canonical ensemble 

1 1 f d N x  e - f l u t x t  ...... ~'N) 
Z,v( T, x )  = ~ ,vA~ ,vB NA w NB 1 

"~A "'B " " 
(2) 

where 

N - - I  

U(x, ..... xu)= Z v, . , .+,(x,+,-x3 (3) 
i = 1  

is the potential energy, v i the type of a tom i, xi its position, 2,  = 
(2nflh2/ms,)  m is the thermal de Broglie wavelength, and mj, stands for the 
mass of an a tom of type/~. 

To this aim, we use the result that if a function h(x) has a minimum 
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at Xo within a domain B c R N, then a harmonic expansion about this point 
gives 

fa (2zc/]~) N/2 e-ah(~~ dNxe -Bh(`) ~---} o0 (4) 
[det(O:h/Ox i 0xj)(Xo) ] 1/2, 

A precise formulation of this result is to be sought in asymptotic analysis 
as a multidimensional generalization of Laplace's method. For our pur- 
poses in this paper, it suffices to require that B is compact and h(x) a 
regular enough function with no other local mi/aimum in B than Xo. (For 
precise hypotheses and a proof, see refs. 5 and 6.) If several local minima 
are present inside the domain B, then one can divide it into subdomains 
containing each only one local minimum, and apply Eq. (4) to each of 
them in turn. This results in a sum over all the local minima of h(x) in B, 

f B (2n/fl) N/2 e- ~hlxo} 
dUx e-~hlxl~ ~ [det(cgZh/Oxi Oxj)(Xo)] 1/2. /~ ~ oo (5) 

x0~ B 

We will use this as an approximation to the classical partition function. In 
statistical field theory, this type of result forms the basis of the so-called 
semiclassical methods. 

In order to apply Eq. (5) to the partition function (2), we must first 
determine the local minima of U(x~ ..... xN), or in other words the 
metastable configurations. With our choice for the potentials V~,,(r), the 
system has 2 N metastable configurations, since to any choice of v~ ..... v~r 
corresponds a metastable state with x i + l - x ~ =  l,.,.,.,+,. This state has an 
energy 

N - - I  

E(v, ..... VN)= ~" E~.,,,+, (6) 
i = 1  

and a matrix of second derivatives given by 

/ 2,.2 -21.2 0 ... 0 t 
/ --~'1,2 "~ 1,2 Jr- ~'2,3 - -  ~'2,3 0 . , .  0 

~ = 1  ! : : ' 
--~'N-2, N--I ~'N--2. N--I'Jf''~N--I,N --AN-IN 

�9 . .  0 - - 2 u - , , N  2 u -  i . u  

(7) 

with 2i.i+ l = K,,,.,,,+, ( i=  1, 2 ..... N -  1). 
T h e  determinant of this matrix is zero, since the vector (1, 1 ..... 1) is 

always an eigenvector, with zero as corresponding eigenvalue. To be able 
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to apply formula (5), we must first eliminate this translational mode; 
practically, this amounts to working on a subspace of all the possible 
displacements, orthogonal to the subspace generated by the (1, 1 ..... 1) 
vector. On this subspace, the determinant of ~ is given by the product of 
the other eigenvalues of 9 ,  which can be shown to be equal to 

N - - I  

D(v~,..., vN)=-det~ = N  H K,.,,.i., (8) 
i = 1  

The application of formula (5) implies then that in the harmonic 
approximation the partition function ZN(T, x) is given by 

- -  Z "'" Z exp - f l  E Ev,,.,+, 

( l~-' ) 
x exp - ~  ~ In K,.,.,.~+, (9) 

i = l  

(We have neglected a term In N which would anyway disappear in the 
thermodynamic limit.) Since we are working at fixed concentration, only 
the configurations with the correct number of A and B atoms should be 
retained in the preceding sum. 

It is now straightforward to represent this result in terms of Ising 
variables ai (i = 1, 2 ..... N) defined as 

{ + 1  if the atom i is of type A (10) 
tri = 1 if it is of type B 

One easily shows that the energy of a metastable configuration can be 
written as 

N - - I  N N - - I  

U [ { a , } ] -  E E,,,.,,,+,----NEg+hVE a* +Ju ~'. a,a,+, (11) 
i = l  i = l  i = l  

with 

E~ = (Egg + 2EAB + EBa)/4 

h v = (Egg - EaB)/2 (12) 

j v  = (EAA -- 2EAB + EnB)/4 

and similarly for In D, 

N - - I  N N - - I  

_ o j o  (13) �89189 E lnK,,, , , , ,+,-NEo+h~ a~+ ~ afl~+, 
i l l  i = 1  i = l  
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with 

Eo ~ = (In KAA + 2 In KAB + In KBB)/8 

h~ (In KAA--In KBB)/4 (14) 

jo = (In KAA -- 2 In KAB + In KBB)/8 

up tO boundary terms which are negligible in the thermodynamic limit as 
far as bulk properties are concerned. 

It follows that in the limit of low temperatures (fl ~ oo) the partition 
function Z,v(T, x) is equivalent to that of an Ising model with temperature- 
dependent couplings. Explicitly, 

ZN(T,x)~ ~. .-. ~ exp t - f l [Eo(T)+h(T)  
a l = §  ON=§ t. I_ 

x ~ , . + J ( r )  ~ aia~+~ (15) 
i ~ l  i = 1  

as fl ~ 0% where 

he5 
E o ( T ) = E ~ + k B T l o g ( ~ ) ,  with 

h(T) = h v + kB T[h n + �88 log(m B/mA) ] 

3"(T) = j v  + kB TJ n 

2 1/8 (KAAKI, K,,'~ 
Co=\ rn ~ m 2s ] (16) 

(17) 

(18) 

The temperature-dependent terms represent the contribution of the 
harmonic fluctuations around the metastable states. The importance of this 
contribution increases with temperature. 

This simple example shows that a lattice model does not require atoms 
to be fixed at the sites of a regular lattice. Rather, the distances between 
atoms depend on the metastable state that is being considered, while the 
spin variables appear quite naturally as a convenient way of labeling the 
metastable states of the system. Summing over all spin configurations is 
then equivalent to summing over all these states. Note also that even if the 
average interatomic distances change with the overall composition, the spin 
couplings themselves remain fixed! 

We notice that even the term In D[{a i} ]  originating from the har- 
monic fluctuations gives rise only to nearest neighbor couplings. (This 
would not be true for other functions like D[{a i} ] . )  This is surprising, as 
one would expect elastic forces to induce longer-range couplings. One is 
tempted to consider this as an artifact of the one-dimensional case. 
However, the result (8) can be generalized to higher dimensions. For a 
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square lattice comprising Nx columns and N~, rows, again with couplings 
between nearest neighbors and free boundary conditions, the generalization 
of (8) reads 

det _@2D=NN-"N~ " I-] K,,,,,, (19) 
( i , j )  

(where I-I<;,j> means the product over all pairs of nearest neighbors, each 
pair being counted only once). Similarly, for a cubic lattice one gets 

det ~3D NpN- N~N- N,:N. (20) = N.-  - N y  - N :  . I-I K,,,.,,j 
( i , j )  

Therefore, we notice that integrating out harmonic fluctuations is not 
enough to generate long-range interactions, even in two and three dimen- 
sions. We have also tried models with couplings up to second nearest 
neighbors. Although we have not found general expressions like (19) and 
(20), our results for small systems again indicate that no long-range 
couplings are generated. 

This seems at first to contradict results obtained for compressible Ising 
models, t7"8) where the integration over the harmonic fluctuations generates 
spin couplings decaying like 1ltd. 2 The difference stems from the fact that 
in the compressible case the expansion is not around local minima, but 
around fixed atomic positions for all configurations. Therefore, the expan- 
sion of the energy starts with a term linear in the fluctuations. The integra- 
tion of this linear term gives rise to spin couplings mediated by the elastic 
Green's function, which decays like 1/r d. (This is easy to check for the one- 
dimensional model. Instead of considering fluctuations around metastable 
states where xi+~-xi=l,.,.,.,+,, one can consider fluctuations around a 
state for which x i + l - x i = l ,  where l is a fixed distance. Performing the 
integration, one obtains again an Ising model, this time with long-range 
couplings and multispin interactions.) For our purposes, the use of the 
asymptotic result (5) requires that we expand around local minima. 

As to the qualitative effects of the harmonic fluctuations, note that if 
the terms Eo(T) and h(T) are important for thermodynamic quantities like 
the specific heat, the ordering itself is controlled solely by the spin coupling 
J(T). One can examine separately its two components. The temperature- 
independent term originating from the energies of the bonds is antiferro- 
magnetic ( ju  > 0) if 

EAB < (EAA "a t- EBB)/2 (21) 

-" We thank a referee for raising this point. 
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i.e., if the energy of an A-B bond is smaller than the (arithmetic) average 
of the energies of A-A and B-B bonds. On the other hand, the tem- 
perature-dependent term originating from the harmonic fluctuations is 
antiferromagnetic (jo > 0) if 

KA8 < (KAA KBB),/2 (22) 

i.e., if the force constant (the stiffness) of an A-B bond is smaller than the 
geometric average of the force constants of A-A and B-B bonds. 

So we see that the system will as usual tend to favor bonds that are 
as low in energy as possible, but the additional effect of the harmonic 
fluctuations will be to favor bonds as loose as possible. 

A simple argument predicts that the two components of the spin 
coupling J(T) generally have opposite signs. Suppose that the term 
originating from the energies of the bonds is antiferromagnetic ( j u > 0 ) .  
This means that the energy of an A-B bond is lower than the average energy 
of A-A and B-B bonds. But a bond lower in energy is usually tighter and 
henceforth more rigid. Therefore we expect that K]B>KAAKBB, which 
implies that the term originating from the harmonic fluctuations is ferro- 
magnetic ( j o  < 0). 

3. G E N E R A L  CASE: R E D U C T I O N  TO M E T A S T A B L E  STATES 

The model presented in the preceding section is illustrative because the 
calculations can be carried out analytically. We discuss now the general 
case. 

Consider a classical system of N identical particles. The classical parti- 
tion function in the canonical ensemble (including the correct Boltzmann 
counting term) is given by 

Z,v(V, T)-N!13iv f d3Np d3Nq e -f l ' 'e ' tp 'q) (23) 

Usually, the particles are restricted to a certain volume V of space whose 
volume is adjusted to give the correct density. This is necessary to describe 
gases where the atoms must be confined, but here we want to describe 
bound atoms, either in solids or as surface adsorbates. In this case, confine- 
ment is not necessary since the atoms do not escape from the sample (at 
least not at important rates). Therefore we lift the usual restriction on the 
volume of integration in Eq. (23) and replace it by some other constraint 
to be specified later. We denote this condition by S' d3Nq �9 
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We assume a Hamiltonian ~ ( p ,  q) of the form 

J : =  + u({q,} )  
i ~ l  

(24) 

where U({%-}) is the interaction energy of the N atoms in the configuration 
{q~} and rn is their mass. We suppose that there are no external fields, and 
that therefore the energy U({qi}) is invariant under overall translations or 
rotations. 

The integration on the momentum variables is trivial, and we get 

ZN(T) = 1 :|' dS'Vq e -aU~{q'}) (25) 
2SNN! J 

where the thermal wavelength is 2 = (2nflh2/m) 1/2. 
To apply the asymptotic result (5) to the integral on the coordinates 

in Eq. (25), we must consider the local minima of U({qi}), or in other 
words the metastable configurations. The symmetries of U({q,-}) imply that 
if a microscopic configuration {q;} is metastable, then any other configura- 
tion obtained by a rigid spatial transformation and/or relabeling of the 
atoms will also be metastable and of equal energy. Therefore, the set of 
metastable configurations can be decomposed into classes of equivalent (in 
the sense that they can be brought onto each other by a rigid spatial trans- 
formation and/or relabeling) microscopic configurations, which we will 
simply call "metastable states" in what follows. 

The continuous translational and rotational symmetries prohibit the 
direct application of the asymptotic formula (5), which requires separate 
minima. But we can easily remove these degeneracies by fixing six degrees 
of freedom. 

Thus, by adding to the integral in (23) a constraint fixing all three 
Cartesian coordinates of one atom, two coordinates of a second atom, and 
one coordinate of a third one, the degeneracies are lifted. This is the condi- 
tion that we use to replace the usual confinement in a volume V. For each 
metastable state there are N! microscopic configurations satisfying this 
constraint (N! is the number of possible relabelings). The asymptotic 
formula (5) can then be applied to give 

(2~/fl)3N/2 ~ exp(--flU[{qi}o]) 
ZTv(T) 23N metastabte 

s ta tes  

) x exp - ~ l n D [ { q ; } o ]  , ~ o o  (26) 
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where 

(0 ] i27/ D [ { q i } ~  0q,.=0qz p / 

In Eq. (26) logarithms of quantities with the dimension of a force 
constant appear. To remove this problem, we introduce an arbitrary force 
constant k and its associated frequency 05, with o52 = F,/m, so that Eq. (26) 
can be written as 

/'kB T~ 3N 
=, ab,o exp/-  Ue(q,}ol / 

s t a t e s  

( l  ( c(q,}olll 
x exp - ~ l n \  - ~  ] ,1 '  / ~ o o  (28) 

all the quantities being now dimensionless. 
The preceding calculations can be easily extended to systems with 

several types of particles. 

4. REDUCTION TO A LATTICE M O D E L  

The representation of Eq.(28) by a lattice model necessitates 
hypotheses on the structure of the metastable states. We will discuss two 
examples, adsorption and substitutional alloys. 

In the case of adsorption, the substrate provides a regular array of 
preferential sites for the adsorbed atoms. Even so, the atoms in the 
metastable configurations will never be perfectly at these sites. On the one 
hand, nearby adsorbed atoms will tend to displace them a little bit, on the 
other hand, the substrate itself is not perfectly rigid and reacts to the 
presence of adsorbed atoms. Nevertheless, for each choice of occupancy of 
the adsorption sites, we can allow the perfect atomic configuration to 
"relax" to a local minimum of the energy. If the interactions are weak, we 
should expect the relaxed configuration to be quite close to the perfect one. 
In this way, we can associate with each occupancy of the adsorption sites, 
i.e., with each spin configuration, a metastable state. This seems perfectly 
reasonable, and this is the main hypothesis that we make on the structure 
of the metastable states. 

It is worthwhile to add that this condition, requiring a relatively deep 
substrate potential and weak couplings between adsorbed atoms (order-  
disorder limit), is not always satisfied. In fact, in the case of a shallow sub- 
strate potential and relatively strong forces between the adsorbed atoms 
(displacive limit) the metastable states correspond to domains with domain 
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walls extending over several adsorption sites. A lattice model cannot repre- 
sent the metastable states in this limit; a continuum model appears more 
appropriate. 

As an example for substitutional alloys, we consider the Cu,.Aut_x 
family. This case is particularly simple since the lattice structure is not 
changing with concentration x; it always remains fcc. The copper atoms are 
slightly "smaller" than the gold atoms, and this means that the actual lat- 
tice is never perfectly fcc, for if at a particular site a copper atom is 
replaced by a gold atom, nearby atoms would be pushed away a little bit. 
This effect is analogous to the local relaxation effects in the case of adsorp- 
tion. But here there is an additional effect: the mean lattice constant 
changes with composition (Vegard's law). Nevertheless, for each possible 
occupancy of the fcc lattice, we can allow the perfect atomic configuration 
to "relax," this time by allowing local displacements and changes in the 
lattice constants, until a local minimum of the energy is reached. Assuming 
that these local and global relaxations do not change "topology" of the 
atomic configuration, we can again associate a metastable state to each 
spin configuration. 

Note that in both examples other types of metastable states exist. For 
the alloy case, structures with defects like vacancies or dislocations can also 
be metastable. For the simplicity of the argument, we neglect them here, 
but we will come back to this point in the conclusion when discussing 
polymorphism. 

We define the functions U[{cri} ] and In D[{a i}]  by identifying them 
with the values taken by U[{qi}o ] and In D[{qi}o] in the metastable con- 
figuration corresponding to {tyi}. In view of our hypotheses, they are well 
defined for all lattice configurations. 

If we retain only metastable configurations corresponding to spin con- 
figurations, the sum over the metastable states in Eq. (28) can be replaced 
by a sum over the configurations of the lattice model 

ZN(T)~ ~ ... ~" exp(- f lU[{~,}])  
o1= +1 tTN~ +1 

(1 (D[_{a,}]~ 
x exp - ~ l n  f l -~oo  (29) \ g s~ / ) '  

The final step is based on the following simple mathematical result, t9~ Any 
function f of a set of variables try, a2 ..... trN restricted to the values 
{ + 1, - 1 } can be expanded as 

f(~r,, cr 2 ..... r = E f ~  1-] tr, (30) 
:t i E ~  
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where the sum is on all the subsets of { 1, 2 ..... N}. Furthermore, if the value 
of the function f is given for all the possible values of tr~ ..... aN, then the 
coefficients f~ are uniquely determined. (This result can be extended to 
other types of models, like Potts models, tg)) 

We can apply this cluster expansion to the functions Ul-{ai} ] and 
ln D[{ai}] .  Since by our hypothesis these are defined for all spin con- 
figurations, they can be expanded as in Eq. (30) with uniquely determined 
coefficients. Note that these coefficients are fixed once for all; they are 
therefore independent both of the temperature and of the concentration. 
This has at first some nonintuitive consequences, because the coupling 
parameters in a lattice model are usually considered as mean interaction 
energies between atoms; these energies are expected to change if the mean 
interatomic distances change. We have seen that in Cu.,.Au~_x alloys the 
mean lattice constant indeed changes with composition, but the expansion 
coefficients that we have defined are independent of this composition! We 
have also shown this explicitly for the soluble one-dimensional model of 
Section 2, where the mean interatomic distance changes with composition, 
but the expansion coefficients for U[{ai}]  and In D[{a,-}] remain fixed. 

Inserting the cluster expansion (30) for U[{a~}] and In D[{a~}] into 
the partition function, we obtain the desired result, namely that in the limit 
of low temperatures the partition function of the system is equivalent to 
that of an Ising model on a regular lattice. We have therefore established 
a link between Ising configurations and atomic configurations in the "real" 
world, and shown that, contrary to the immediate intuition, a lattice model 
is absolutely not incompatible with either local or global relaxation effects. 

At low enough temperatures, only the term in the partition function 
originating from the energies of the metastable states will survive. At 
higher temperatures, we obtain an Ising model with temperature-dependent 
coupling parameters, which includes the contribution of the harmonic 
fluctuations around the equilibrium positions, or in other words the 
phonons. The fact that the phonon spectrum depends on the configuration 
is taken into account naturally. 

As a final point for this section, we remark that the practical useful- 
ness of any lattice model will depend on the number of coefficients in the 
cluster expansion of the functions U[{a~}] and In D[{a,.}] necessary to 
obtain good approximations. Formally, these two functions have 2 N expan- 
sion coefficients, but in any physical situation discrete symmetries will 
drastically reduce the number of independent coefficients. Furthermore, it 
has been found empirically that good results can be obtained in many 
systems by considering couplings only between rather close lattice sites. 
This assumption of short-range couplings is the starting point of most 
studies using lattice models. It is important to notice that it does not mean 
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that the underlying interactions must also be short ranged; it just means 
that they can be described by a small number of effective expansion coef- 
ficients. For example, such an approach has been applied to calculations of 
Madelung energies in a simple charge-transfer model, ~1~ where the under- 
lying interaction is the Coulomb interaction. Even in this case, an Ising 
model with a small number of couplings has been shown to give accurate 
results. 

5. D I S C U S S I O N  A N D  C O N C L U S I O N  

In our derivation of an Ising model starting from the classical parti- 
tion function of N particles, we have noticed two important points. First, 
the Ising model (or other similar lattice models) can account for both local 
and global relaxations. A spin configuration represents a metastable atomic 
configuration, where the atoms are not located at the sites of the perfect 
lattice, but have been allowed to "relax" to a local minimum of the energy. 
Second, the Boltzmann weight for a given spin configuration depends not 
only on the energy of the corresponding metastable configuration, but also 
on the thermal fluctuations (phonons) about this configuration. 

We have also argued, on the basis of a simple one-dimensional model, 
that the ordering, which is dictated by purely energetic considerations at 
low temperatures, is more and more weakened by the phonon effects as the 
temperature increases. Thus the critical temperatures for the order-disorder 
transitions would in reality be lower than what is predicted on the basis 
of an Ising model with couplings determined from the energies of the 
metastable states. We have made a crude estimate of the magnitude of this 
effect for the case of CuxAu~_., alloys, and found it to be of the order of 
5-10% around the transition temperature. ~1~ Stronger effects are expected 
to occur in the presence of phonon softening, in particular in the vicinity 
of a second-order structural phase transition. 

Several generalizations of our approach are possible. It can be 
extended to other lattice models,.like Potts models, or to systems with sur- 
faces where relaxations are particularly impor tant )  Another possible 
generalization is to consider metastable states with different lattice struc- 
tures. In our example for substitutional alloys, we have retained only 
metastable configurations with atoms in fcc structure. Of course, other 
types of metastable states exist, with atoms on different lattices, such as bcc 
or cubic lattice.'One could repeat the mapping to a lattice model for these 
states, and the sum on all metastable states in the partition function would 

3 We are currently calculating the changes in the Ising couplings close to the (100) surface of 
Cu,.Auj _,. alloys, to study phenomena such as surface-induced disordering. 
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become a sum on  the pa r t i t ion  func t ions  c o r r e s p o n d i n g  to each of  these 
possible  s tructures.  F o r  Cu .~Aut_x  alloys, this wou ld  no t  be necessary 
since the fcc s t ruc ture  is s table  on  the whole  c o n c e n t r a t i o n  range,  which 
indicates  tha t  the o the r  metas tab le  states mus t  have sufficiently higher  
energies to be negligible.  But  m a n y  b i n a r y  alloys exhibi t  po lym orph i sm ,  
which indicates  that  several types of  metas tab le  states have very close 
energies, and  mus t  therefore all be t aken  in to  accoun t  in the pa r t i t i on  
funct ion.  
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NOTE A D D E D  IN PROOF 

The  effects of lat t ice v ib ra t ions  on  the o rde r ing  in b i n a r y  alloys has 
recently also been  s tudied by G a r b u l s k y  an d  Ceder  (Phys.  Rev. B 49:6327 
(1994)). 
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